Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 77(1): 124-143, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35429173

RESUMO

BACKGROUND AIMS: As a global health threat, NASH has been confirmed to be a chronic progressive liver disease that is strongly associated with obesity. However, no approved drugs or efficient therapeutic strategies are valid, mainly because its complicated pathological processes is underestimated. APPROACH RESULTS: We identified the RING-type E3 ubiquitin transferase-tripartite motif-containing protein 31 (TRIM31), a member of the E3 ubiquitin ligases family, as an efficient endogenous inhibitor of transforming growth factor-beta-activated kinase 1 (mitogen-activated protein kinase kinase kinase 7; MAP3K7), and we further confirmed that TRIM31 is an MAP3K7-interacting protein and promotes MAP3K7 degradation by enhancing ubiquitination of K48 linkage in hepatocytes. Hepatocyte-specific Trim31 deletion blocks hepatic metabolism homeostasis, concomitant with glucose metabolic syndrome, lipid accumulation, up-regulated inflammation, and dramatically facilitates NASH progression. Inversely, transgenic overexpression, lentivirus, or adeno-associated virus-mediated Trim31 gene therapy restrain NASH in three dietary mice models. Mechanistically, in response to metabolic insults, TRIM31 interacts with MAP3K7 and conjugates K48-linked ubiquitination chains to promote MAP3K7 degradation, thus blocking MAP3K7 abundance and its downstream signaling cascade activation in hepatocytes. CONCLUSIONS: TRIM31 may serve as a promising therapeutic target for NASH treatment and associated metabolic disorders.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Animais , Camundongos , MAP Quinase Quinase Quinases/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Humanos , Proteínas com Motivo Tripartido/metabolismo
2.
J Hazard Mater ; 400: 123158, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32947736

RESUMO

Ambient particulate matter (PM2.5)-induced metabolic syndromes is a critical contributor to the pathological processes of neurological diseases, but the underlying molecular mechanisms remain poorly understood. The rhomboid 5 homolog 2 (Rhbdf2), an essential regulator in the production of TNF-α, has recently been confirmed to exhibit a key role in regulating inflammation-associated diseases. Thus, we examined whether Rhbdf2 contributes to hypothalamic inflammation via NF-κB associated inflammation activation in long-term PM2.5-exposed mice. Specifically, proopiomelanocortin-specific Rhbdf2 deficiency (Rhbdf2Pomc) and corresponding littermates control mice were used for the current study. After 24 weeks of PM2.5 inhalation, systemic-metabolism disorder was confirmed in WT mice in terms of impaired glucose tolerance, increased insulin resistance, and high blood pressure. Markedly, PM2.5-treated Rhbdf2Pomc mice displayed a significantly opposite trend in these parameters compared with those of the controls group. We next confirmed hypothalamic injury accompanied by abnormal POMC neurons loss, as indicated by increased inflammatory cytokines, chemokines, and oxidative-stress levels and decreased antioxidant activity. These results were further supported by blood routine examination. In summary, our findings suggest that Rhbdf2 plays an important role in exacerbating PM2.5-stimulated POMC neurons loss associated hypothalamic injury, thus providing a possible target for blocking pathological development of air pollution-associated diseases.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/toxicidade , Animais , Inflamação/induzido quimicamente , Inflamação/genética , Camundongos , Neurônios , Estresse Oxidativo , Material Particulado/toxicidade , Pró-Opiomelanocortina
3.
Free Radic Biol Med ; 141: 67-83, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31153974

RESUMO

Endoplasmic reticulum stress (ERS) has been implicated in obesity-associated cardiac remodeling and dysfunction. Inactive rhomboid protein 2 (iRhom2), also known as Rhbdf2, is an inactive member of the rhomboid intramembrane proteinase family, playing an essential role in regulating inflammation. Nevertheless, the role of ERS-meditated iRhom2 pathway in metabolic stress-induced cardiomyopathy remains unknown. In the study, we showed that 4-PBA, as an essential ERS inhibitor, significantly alleviated high fat diet (HFD)-induced metabolic disorder and cardiac dysfunction in mice. Additionally, lipid deposition in heart tissues was prevented by 4-PBA in HFD-challenged mice. Moreover, 4-PBA blunted the expression of iRhom2, TACE, TNFR2 and phosphorylated NF-κB to prevent HFD-induced expression of inflammatory factors. Further, 4-PBA restrained HFD-triggered oxidative stress by promoting Nrf-2 signaling. Importantly, 4-PBA markedly suppressed cardiac ERS in HFD mice. The anti-inflammation, anti-ERS and anti-oxidant effects of 4-PBA were verified in palmitate (PAL)-incubated macrophages and cardiomyocytes. In addition, promoting ERS could obviously enhance iRhom2 signaling in vitro. Intriguingly, our data demonstrated that PAL-induced iRhom2 up-regulation apparently promoted macrophage to generate inflammatory factors that could promote cardiomyocyte inflammation and lipid accumulation. Finally, interventions by adding fisetin or metformin significantly abrogated metabolic stress-induced cardiomyopathy through the mechanisms mentioned above. In conclusion, this study provided a novel mechanism for metabolic stress-induced cardiomyopathy pathogenesis. Therapeutic strategy to restrain ROS/ERS/iRhom2 signaling pathway could be developed to prevent myocardial inflammation and lipid deposition, consequently alleviating obesity-induced cardiomyopathy.


Assuntos
Proteínas de Transporte/metabolismo , Estresse do Retículo Endoplasmático , Flavonoides/farmacologia , Coração/fisiopatologia , Metabolismo dos Lipídeos , Metformina/farmacologia , Animais , Peso Corporal , Dieta Hiperlipídica , Ecocardiografia , Flavonóis , Regulação da Expressão Gênica , Coração/efeitos dos fármacos , Inflamação , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Estresse Oxidativo , Palmitatos/metabolismo , Transdução de Sinais , Regulação para Cima
4.
Free Radic Biol Med ; 130: 542-556, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30465824

RESUMO

An increasing number of studies have shown that air pollution containing particulate matter (PM) ≤ 2.5 µm (PM2.5) plays a significant role in the development of metabolic disorder and other chronic diseases. Inflammation and oxidative stress caused by metabolic syndrome are widely determined to be critical factors in the development of nonalcoholic fatty liver disease (NAFLD) pathogenesis. However, there is no direct evidence of this, and the underlying molecular mechanism is still not fully understood. In this study, we investigated the role of inflammation and oxidative stress caused by prolonged PM2.5 exposure in dyslipidemia-associated chronic hepatic injury, and further determined whether an increase in hepatic inflammation and oxidative stress promoted lipid accumulation in the liver, ultimately increasing the risk of NAFLD. Therefore, we studied changes in indicators of metabolic disorder and in symbolic indices of NAFLD. We confirmed increases in insulin resistance, glucose tolerance, peripheral inflammation and dysarteriotony in PM2.5-induced mice. Oxidative stress and inflammatory response in the liver caused by PM2.5 inhalation contributed to abnormal hepatic function, further promoting lipid accumulation in the liver. Moreover, we observed inhibition of oxidative stress and inflammatory response by pyrrolidine dithiocarbamate (PDTC) and N-acetyl-L-cysteine (NAC) in vitro, suggesting that oxidative stress and inflammatory in liver cells aggravated by PM2.5 contributed to hepatic injury by altering normal lipid metabolism. These results indicate a new goal for preventing and treating air pollution-induced diseases: suppression of oxidative stress and inflammatory response.


Assuntos
Dislipidemias/tratamento farmacológico , Inflamação/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Acetilcisteína/farmacologia , Poluentes Atmosféricos/toxicidade , Animais , Dislipidemias/metabolismo , Dislipidemias/patologia , Hepatócitos/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Material Particulado/química , Pirrolidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tiocarbamatos/farmacologia
5.
Nanotoxicology ; 12(9): 1045-1067, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30257117

RESUMO

Research suggests that particulate matter (PM2.5) is a predisposing factor for metabolic syndrome-related systemic inflammation and oxidative stress injury. TNF-α as a major pro-inflammatory cytokine was confirmed to participate in various diseases. Inactive rhomboid protein 2 (iRhom2) was recently determined as a necessary regulator for shedding of TNF-α in immune cells. Importantly, kidney-resident macrophages are critical to inflammation-associated chronic renal injury. Podocyte injury can be induced by stimulants and give rise to nephritis, but how iRhom2 contributes to PM2.5-induced renal injury is unclear. Thus, we studied whether PM2.5 causes renal injury and characterized iRhom2 with respect to TNF-α release in mice macrophages and renal tissues in long-term PM2.5-exposed mouse models. After long-term PM2.5 exposures, renal injury was confirmed via inflammatory cytokine, chemokine expression, and reduced antioxidant activity. Patients with kidney-related diseases had increased TNF-α, which may contribute to renal injury. We observed up-regulation of serum creatinine, serum urea nitrogen, kidney injury molecule 1, uric acid, TNF-α, MDA, H2O2, and O2- in PM2.5-treated mice, which was greater than that found in Nrf2-/- mice. Meanwhile, increases in metabolic disorder-associated indicators were involved in PM2.5-induced nephritis. In vitro, kidney-resident macrophages were observed to be critical to renal inflammatory infiltration and function loss via regulation of iRhom2/TACE/TNF-α signaling, and suppression of Nrf2-associated anti-oxidant response. PM2.5 exposure led to renal injury partly by inflammation-mediated podocyte injury. Reduced SOD1, SOD2, Nrf2 activation, and increased XO, NF-κB activity, TACE, iNOS, IL-1ß, TNF-α, IL-6, MIP-1α, Emr-1, MCP-1, and Cxcr4, were also noted. Long-term PM2.5 exposure causes chronic renal injury by up-regulation of iRhom2/TACE/TNF-α axis in kidney-resident macrophages. Overexpression of TNF-α derived from macrophages causes podocyte injury and kidney function loss. Thus, PM2.5 toxicities are related to exposure duration and iRhom2 may be a potential therapeutic renal target.


Assuntos
Poluentes Atmosféricos/toxicidade , Proteínas de Transporte/genética , Rim/metabolismo , Fator 2 Relacionado a NF-E2/deficiência , Material Particulado/toxicidade , Insuficiência Renal Crônica/induzido quimicamente , Animais , Linhagem Celular , Citocinas/metabolismo , Humanos , Inflamação , Rim/imunologia , Rim/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Tamanho da Partícula , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/metabolismo
6.
Adv Healthc Mater ; 7(17): e1800427, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29944201

RESUMO

The mortality rate of acute liver failure significantly increases due to fatal septicemia. Inactive rhomboid protein 2 (iRhom2) is an essential regulator of shedding TNF-α by trafficking with TNF-α converting enzyme (TACE). Fisetin, a flavonoid present in various fruits and plants, possesses anti-oxidative stress and anti-inflammatory activities. Here, multi-combination nanoparticles Fe@Au conjugated with fisetin, iRhom2 small interfering RNA (siRNA), and TNF-α inhibitor (FN) are prepared to examine their effects on fatal septicemia-associated hepatic failure induced by Listeria monocytogenes (LM) in mice and to reveal the underlying mechanisms. After LM infection, upregulation of glutamic-oxalacetic transaminease, glutamic-pyruvic transaminase, alkaline phosphatase, TNF-α, malondialdehyde, H2 O2 , and O2- is observedcompared to FN-treated mice. The iRhom2/TACE/TNF-α signals are enhanced in vivo and in vitro, resulting in oxidative stress, which is especially associated with the activation of kupffer cells and other macrophages. Decrease in Nrf2 activation and increase of inflammation-associated regulators are also noted in vivo and in vitro. Furthermore, overexpression of TNF-α derived from macrophages aggravates hepatic failure. Inversely, the processes above are restored by FN nanoparticles through the regulation of the iRhom2/TACE/TNF-α axis and Nrf2 activation. These findings suggest that FN may be a potential approach to protect against bacterial septicemia-related diseases by targeting iRhom2.


Assuntos
Proteínas de Transporte/metabolismo , Listeria monocytogenes/patogenicidade , Falência Hepática/metabolismo , Falência Hepática/microbiologia , Sepse/metabolismo , Sepse/microbiologia , Proteína ADAM17/metabolismo , Animais , Western Blotting , Proteínas de Transporte/genética , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
7.
Biochem Biophys Res Commun ; 493(4): 1402-1409, 2017 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-28965953

RESUMO

Accumulating researches reported that particulate matter (PM2.5) is a risk factor for developing various diseases, including metabolic syndrome. Recently, inactive rhomboid protein 2 (iRhom2) was considered as a necessary modulator for shedding of tumor necrosis factor-α (TNF-α) in immune cells. TNF-α, a major pro-inflammatory cytokine, was linked to various pathogenesis of diseases, including dyslipidemia. Here, wild type (WT) and iRhom2-knockout (iRhom2-/-) mice were used to investigate the effects of iRhom2 on PM2.5-induced hepatic dyslipidemia. The hepatic histology, inflammatory response, glucose tolerance, serum parameters and gene expressions were analyzed. We found that long-term inhalation of PM2.5 resulted in hepatic steatosis. And a significant up-regulation of iRhom2 in liver tissues was observed, accompanied with elevated TNF-α, TNF-α converting enzyme (TACE), TNFα receptor (TNFR)2 and various inflammatory cytokines expressions. Additionally, PM2.5 treatment caused TG and TC accumulation in serum and liver, probably attributed to changes of genes modulating lipid metabolism. Intriguingly, hepatic injury and dyslipidemia were attenuated by iRhom2-/- in mice with PM2.5 challenge. In vitro, iRhom2-knockdwon reduced TNF-α expressions and its associated inflammatory cytokines in Kupffer cells, implying that liver-resident macrophages played an important role in regulating hepatic inflammation and lipid metabolism in cells treated with PM2.5. The findings indicated that long-term PM2.5 exposure caused hepatic steatosis and dyslipidemia through triggering inflammation, which was, at least partly, dependent on iRhom2/TNF-α pathway in liver-resident macrophages.


Assuntos
Proteínas de Transporte/metabolismo , Dislipidemias/etiologia , Dislipidemias/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Material Particulado/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Poluentes Atmosféricos/toxicidade , Animais , Proteínas de Transporte/genética , Linhagem Celular , Dislipidemias/genética , Fígado Gorduroso/genética , Mediadores da Inflamação/metabolismo , Células de Kupffer/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Material Particulado/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo
8.
Int J Nanomedicine ; 12: 327-345, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28115850

RESUMO

High-fat diet-induced metabolic syndrome followed by chronic kidney disease caused by intestinal endotoxemia have received extensive attention. Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) and oxidative stress-related Nrf2/Keap1 were regarded as the key target points involved in metabolic inflammation and kidney injury. However, the molecular mechanism of interaction between TLR4/NF-κB and Nrf2 activation in high-fat diet-induced renal injury is not absolutely understood. Quercetin, a natural product, has been reported to possess antitumor and anti-inflammatory effects. In this regard, this study attempted to prepare poly(d,l-lactide-co-glycolide)-loaded gold nanoparticles precipitated with quercetin (GQ) to investigate the anti-inflammatory and anti-oxidative stress effects in high-fat diet-induced kidney failure. For this study, C57BL/6 mice fed fat-rich fodder were used as the metabolic syndrome model to evaluate the protective effects of GQ on kidney injury and to determine whether TLR4/NF-κB and Nrf2 pathways were associated with the process. Moreover, histological examinations, enzyme-linked immunosorbent assay, Western blot, and basic blood tests and systemic inflammation-related indicators were used to investigate the inhibitory effects of GQ and underlying molecular mechanism by which it may reduce renal injury. Of note, podocyte injury was found to participate in endotoxin-stimulated inflammatory response. TLR4/NF-κB and Nrf2 pathways were upregulated with high-fat diet intake in mice, resulting in reduction of superoxide dismutase activity and increase in superoxide radical, H2O2, malondialdehyde, XO, XDH, and XO/XDH ratio. In addition, upregulation of TLR4/NF-κB and oxidative stress by endotoxin were observed in vitro, which were suppressed by GQ administration, ultimately alleviating podocyte injury. These findings indicated that GQ could restore the metabolic disorders caused by high-fat diet, which suppresses insulin resistance, lipid metabolic imbalance, and proinflammatory cytokine production. Also, it may prevent kidney injury by inhibition of TLR4/NF-κB and oxidative stress, further increasing superoxide dismutase activity.


Assuntos
Endotoxemia/tratamento farmacológico , Endotoxemia/metabolismo , Ouro/química , Rim/patologia , Nanopartículas/química , Quercetina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Dieta Hiperlipídica , Endotoxemia/sangue , Ensaio de Imunoadsorção Enzimática , Inflamação/patologia , Rim/efeitos dos fármacos , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Contagem de Plaquetas , Podócitos/efeitos dos fármacos , Podócitos/patologia , Quercetina/farmacologia , Superóxido Dismutase/metabolismo , Receptor 4 Toll-Like/metabolismo
9.
Free Radic Biol Med ; 99: 259-272, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27554971

RESUMO

Increasing studies demonstrated that air pollution (PM2.5) plays a significant role in metabolic and neurological diseases. Unfortunately, there is no direct testimony of this, and yet the molecular mechanism by which the occurrence remains unclear. In this regard, we investigated the role of NF-κB and Nrf2 signaling in PM2.5-induced metabolic disorders and neuroinflammation, and further confirmed whether Nrf2 deficiency promoted PM2.5-induced inflammatory response by up regulating astrocytes activation and nerve injury via modulating NF-κB signaling pathways. Present results found that, indeed, PM2.5 challenges results in glucose tolerance, insulin resistance, dysarteriotony, peripheral inflammation, nerve injury and hypothalamus oxidative stress through astrocytes activation related NF-κB pathway in Nrf2 deficient mice. Moreover, in vitro study, we confirmed that activated astrocytes induced by PM2.5 were involved in pathogenesis of hypothalamic inflammation, which were significantly associated with NF-κB signaling. Nanoceria as potential anti-inflammatory and anti-oxidant stress biomaterial has gained increasing attention. Moderate nanoceria treatment is able to restrain PM2.5-induced metabolic syndrome and inflammation. Inhibition of astrocytes activation related NF-κB and enhancement of Nrf2 by cerium oxide were observed in vivo and in vitro, suggesting cerium oxide inhibited hypothalamic inflammation and nerve injury by altering hypothalamic neuroendocrine alterations and decreasing glial cells activation. In addition, NF-κB inhibitor pyrollidine dithiocarbamate (PDTC) treated primary astrocytes directly determined Nrf2 pathway could be up regulated by dose-dependent nanoceria. These results suggest a new therapeutic approach or target to protect against air pollution related diseases by cerium oxide treatment.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Astrócitos/efeitos dos fármacos , Cério/farmacologia , Hipotálamo/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Material Particulado/antagonistas & inibidores , Poluentes Atmosféricos/toxicidade , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Hipotálamo/metabolismo , Hipotálamo/patologia , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/deficiência , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Cultura Primária de Células , Prolina/análogos & derivados , Prolina/farmacologia , Transdução de Sinais , Tiocarbamatos/farmacologia
10.
Brain Behav Immun ; 58: 69-81, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26765996

RESUMO

Recent studies suggest that diet-induced fractalkine (FKN) stimulates neuroinflammation in animal models of obesity, yet how it occurs is unclear. This study investigated the role of FKN and it receptor, CX3CR1, in fructose-induced neuroinflammation, and examined curcumin's beneficial effect. Fructose feeding was found to induce hippocampal microglia activation with neuroinflammation through the activation of the Toll-like receptor 4 (TLR4)/nuclear transcription factor κB (NF-κB) signaling, resulting in the reduction of neurogenesis in the dentate gyrus (DG) of mice. Serum FKN levels, as well as hypothalamic FKN and CX3CR1 gene expression, were significantly increased in fructose-fed mice with hypothalamic microglia activation. Hippocampal gene expression of FKN and CX3CR1 was also up-regulated at 14d and normalized at 56d in mice fed with fructose, which were consistent with the change of GFAP. Furthermore, immunostaining showed that GFAP and FKN expression was increased in cornu amonis 1, but decreased in DG in fructose-fed mice. In vitro studies showed that GFAP and FKN expression was stimulated in astrocytes, and suppressed in mixed glial cells exposed to 48h-fructose, with the continual increase of pro-inflammatory cytokines. Thus, increased FKN and CX3CR1 may cause a cross-talk between activated glial cells and neurons, playing an important role in the development of neuroinflammation in fructose-fed mice. Curcumin protected against neuronal damage in hippocampal DG of fructose-fed mice by inhibiting microglia activation and suppressed FKN/CX3CR1 up-regulation in the neuronal network. These results suggest a new therapeutic approach to protect against neuronal damage associated with dietary obesity-associated neuroinflammation.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Curcumina/administração & dosagem , Encefalite/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Proliferação de Células/efeitos dos fármacos , Encefalite/induzido quimicamente , Encefalite/prevenção & controle , Frutose/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos ICR , Microglia/efeitos dos fármacos , Microglia/metabolismo , Transdução de Sinais , Regulação para Cima
11.
Eur J Pharmacol ; 770: 154-64, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26593707

RESUMO

Betaine has been proven effective in treating nonalcoholic fatty liver disease (NAFLD) in animal models, however, its molecular mechanisms remain elusive. The aims of this study were to explore the mechanisms mediating the anti-inflammatory and anti-lipogenic actions of betaine in fructose-fed rats. In this study, betaine improved insulin resistance, reduced body weight gain and serum lipid levels, and prevented hepatic lipid accumulation in fructose-fed rats. It up-regulated hepatic expression of liver X receptor-alpha (LXRα) and peroxisome proliferator-activated receptor-alpha (PPARα), with the attenuation of the changes of their target genes, including hepatic carnitine palmitoyl transferase (CPT) 1α, glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1, apolipoprotein B, sterol regulatory element-binding protein 1c and adipocyte differentiation-related protein, involved in fatty acid oxidation and lipid storage in these model rats. Furthermore, betaine alleviated ER stress and inhibited acetyl-CoA carboxylase α, CPT II, stearoyl-CoA desaturase 1 and fatty acid synthase expression involved in fatty acid synthesis in the liver of fructose-fed rats. Betaine suppressed hepatic gluconeogenesis in fructose-fed rats by moderating protein kinase B -forkhead box protein O1 pathway, as well as p38 mitogen-activated protein kinase and mammalian target of rapamycin activity. Moreover, betaine inhibited hepatic nuclear factor kappa B /nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome activation-mediated inflammation in this animal model. These results demonstrated that betaine ameliorated hepatic lipid accumulation, gluconeogenesis, and inflammation through restoring LXRα and PPARα expression and alleviating ER stress in fructose-fed rats. This study provides the potential mechanisms of betaine involved in the treatment of NAFLD.


Assuntos
Betaína/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Frutose/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Receptores Nucleares Órfãos/metabolismo , PPAR alfa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Proteínas de Transporte/metabolismo , Citocinas/biossíntese , Ácidos Graxos/biossíntese , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamassomos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Receptores X do Fígado , Masculino , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Ratos Sprague-Dawley
12.
Mol Nutr Food Res ; 59(2): 189-202, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25303559

RESUMO

SCOPE: Hypothalamic astrogliosis and inflammation cause neural injury, playing a critical role in metabolic syndrome development. This study investigated whether and how fructose caused hypothalamic astrogliosis and inflammation in vivo and in vitro. The inhibitory effects of betaine on hypothalamic neural injury, astrogliosis, and inflammation were explored to address its improvement of fructose-induced metabolic syndrome. METHODS AND RESULTS: Rats or astrocytes were exposed to fructose and then treated with betaine. Neural injury, proinflammatory markers, Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway, and histone deacetylases 3 (HDAC3) expressions were evaluated. The reduction of pro-opiomelanocortin and melanocortin 4 receptor positive neurons in fructose-fed rats was ameliorated by betaine. Moreover, fructose induced astrogliosis and proinflammatory cytokine production by increasing TLR4, MyD88 (where MyD88 is myeloid differentiation factor 88), and NF-κB expression in rat hypothalamus and astrocytes. HDAC3 overexpression preserved the prolonged inflammation in fructose-stimulated astrocytes by regulating nuclear NF-κB-dependent transcription. Betaine suppressed TLR4/NF-κB pathway activation and HDAC3 expression, contributing to its inhibition of hypothalamic astrogliosis and inflammation in animal and cell models. CONCLUSION: These findings suggest that betaine inhibits fructose-caused astrogliosis and inflammation by the suppression of TLR4/NF-κB pathway activation and HDAC3 expression to protect against hypothalamic neural injury, which, at least partly, contributes to the improvement of fructose-induced metabolic syndrome.


Assuntos
Betaína/farmacologia , Frutose/efeitos adversos , Gliose/tratamento farmacológico , Doenças Hipotalâmicas/tratamento farmacológico , Inflamação/tratamento farmacológico , Animais , Regulação da Expressão Gênica , Gliose/patologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Doenças Hipotalâmicas/patologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Inflamação/patologia , Masculino , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
13.
CNS Neurosci Ther ; 19(4): 235-43, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23521911

RESUMO

BACKGROUNDS AND AIM: Microglial cells as an important part of central nervous system (CNS) have generally believed to play significant role in the process leading to a number of neurodegenerative disorders including Parkinson's disease, Alzheimer's disease, prion diseases, multiple sclerosis, HIV-dementia, and stroke. Although different diseases have quite different pathogenesis, the activation of microglia was shared with all of them. Recently, the resolvin D1 (RvD1) as an endogenous antiinflammatory lipid mediator has been confirmed to be involved in the treatment of inflammation-related neuronal injury in neurodegenerative diseases. Therefore, the inhibition of microglia-activated inflammation has been considered as a major treatment strategy in neurodegenerative disease therapy. However, the molecular mechanisms of RvD1 in microglial cells remain unknown and still do not be reported. METHODS: We taken murine microglia as the experimental sample, and Western blotting, ELISA, reverse-transcriptase PCR, real-time PCR, and electrophoretic mobility shift assay were used to study whether the RvD1 inhibit inflammation of microglial cells. The tumor necrosis factor α (TNF-α), IL-1ß, inducible nitric oxide synthase (iNOS) expression, nuclear factor-κB (NF-κB) activation, and mitogen-activated protein kinase (MAPK) pathways were investigated in lipopolysaccharide (LPS)-activated primary microglia. RESULTS: Our data suggested that RvD1 inhibited the production of LPS-induced microglia inflammatory mediators and TNF-α, IL-1ß, and iNOS expression. In addition, according to the study of related signaling pathways, RvD1 attenuated LPS-induced microglia NF-κB activation,MAPK phosphorylation, and activator protein-1 transcriptional activity. CONCLUSION: This is the first study to demonstrate that RvD1 effects on the reduction of pro-inflammatory responses in LPS-induced microglial cells. The mechanisms underlying these effects may include its potent intracellular NF-κB down-regulation and subsequent pro-inflammatory cytokines release in LPS-activated microglia.


Assuntos
Ácidos Docosa-Hexaenoicos/fisiologia , Mediadores da Inflamação/antagonistas & inibidores , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/fisiologia , Microglia/fisiologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Ácidos Docosa-Hexaenoicos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Mediadores da Inflamação/fisiologia , Camundongos , Microglia/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...